1 | /******************************************************************************* |
---|
2 | NAME ALBERS CONICAL EQUAL AREA |
---|
3 | |
---|
4 | PURPOSE: Transforms input longitude and latitude to Easting and Northing |
---|
5 | for the Albers Conical Equal Area projection. The longitude |
---|
6 | and latitude must be in radians. The Easting and Northing |
---|
7 | values will be returned in meters. |
---|
8 | |
---|
9 | PROGRAMMER DATE |
---|
10 | ---------- ---- |
---|
11 | T. Mittan, Feb, 1992 |
---|
12 | |
---|
13 | ALGORITHM REFERENCES |
---|
14 | |
---|
15 | 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological |
---|
16 | Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United |
---|
17 | State Government Printing Office, Washington D.C., 1987. |
---|
18 | |
---|
19 | 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", |
---|
20 | U.S. Geological Survey Professional Paper 1453 , United State Government |
---|
21 | Printing Office, Washington D.C., 1989. |
---|
22 | *******************************************************************************/ |
---|
23 | |
---|
24 | |
---|
25 | Proj4js.Proj.aea = { |
---|
26 | init : function() { |
---|
27 | |
---|
28 | if (Math.abs(this.lat1 + this.lat2) < Proj4js.common.EPSLN) { |
---|
29 | Proj4js.reportError("aeaInitEqualLatitudes"); |
---|
30 | return; |
---|
31 | } |
---|
32 | this.temp = this.b / this.a; |
---|
33 | this.es = 1.0 - Math.pow(this.temp,2); |
---|
34 | this.e3 = Math.sqrt(this.es); |
---|
35 | |
---|
36 | this.sin_po=Math.sin(this.lat1); |
---|
37 | this.cos_po=Math.cos(this.lat1); |
---|
38 | this.t1=this.sin_po; |
---|
39 | this.con = this.sin_po; |
---|
40 | this.ms1 = Proj4js.common.msfnz(this.e3,this.sin_po,this.cos_po); |
---|
41 | this.qs1 = Proj4js.common.qsfnz(this.e3,this.sin_po,this.cos_po); |
---|
42 | |
---|
43 | this.sin_po=Math.sin(this.lat2); |
---|
44 | this.cos_po=Math.cos(this.lat2); |
---|
45 | this.t2=this.sin_po; |
---|
46 | this.ms2 = Proj4js.common.msfnz(this.e3,this.sin_po,this.cos_po); |
---|
47 | this.qs2 = Proj4js.common.qsfnz(this.e3,this.sin_po,this.cos_po); |
---|
48 | |
---|
49 | this.sin_po=Math.sin(this.lat0); |
---|
50 | this.cos_po=Math.cos(this.lat0); |
---|
51 | this.t3=this.sin_po; |
---|
52 | this.qs0 = Proj4js.common.qsfnz(this.e3,this.sin_po,this.cos_po); |
---|
53 | |
---|
54 | if (Math.abs(this.lat1 - this.lat2) > Proj4js.common.EPSLN) { |
---|
55 | this.ns0 = (this.ms1 * this.ms1 - this.ms2 *this.ms2)/ (this.qs2 - this.qs1); |
---|
56 | } else { |
---|
57 | this.ns0 = this.con; |
---|
58 | } |
---|
59 | this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1; |
---|
60 | this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0)/this.ns0; |
---|
61 | }, |
---|
62 | |
---|
63 | /* Albers Conical Equal Area forward equations--mapping lat,long to x,y |
---|
64 | -------------------------------------------------------------------*/ |
---|
65 | forward: function(p){ |
---|
66 | |
---|
67 | var lon=p.x; |
---|
68 | var lat=p.y; |
---|
69 | |
---|
70 | this.sin_phi=Math.sin(lat); |
---|
71 | this.cos_phi=Math.cos(lat); |
---|
72 | |
---|
73 | var qs = Proj4js.common.qsfnz(this.e3,this.sin_phi,this.cos_phi); |
---|
74 | var rh1 =this.a * Math.sqrt(this.c - this.ns0 * qs)/this.ns0; |
---|
75 | var theta = this.ns0 * Proj4js.common.adjust_lon(lon - this.long0); |
---|
76 | var x = rh1 * Math.sin(theta) + this.x0; |
---|
77 | var y = this.rh - rh1 * Math.cos(theta) + this.y0; |
---|
78 | |
---|
79 | p.x = x; |
---|
80 | p.y = y; |
---|
81 | return p; |
---|
82 | }, |
---|
83 | |
---|
84 | |
---|
85 | inverse: function(p) { |
---|
86 | var rh1,qs,con,theta,lon,lat; |
---|
87 | |
---|
88 | p.x -= this.x0; |
---|
89 | p.y = this.rh - p.y + this.y0; |
---|
90 | if (this.ns0 >= 0) { |
---|
91 | rh1 = Math.sqrt(p.x *p.x + p.y * p.y); |
---|
92 | con = 1.0; |
---|
93 | } else { |
---|
94 | rh1 = -Math.sqrt(p.x * p.x + p.y *p.y); |
---|
95 | con = -1.0; |
---|
96 | } |
---|
97 | theta = 0.0; |
---|
98 | if (rh1 != 0.0) { |
---|
99 | theta = Math.atan2(con * p.x, con * p.y); |
---|
100 | } |
---|
101 | con = rh1 * this.ns0 / this.a; |
---|
102 | qs = (this.c - con * con) / this.ns0; |
---|
103 | if (this.e3 >= 1e-10) { |
---|
104 | con = 1 - .5 * (1.0 -this.es) * Math.log((1.0 - this.e3) / (1.0 + this.e3))/this.e3; |
---|
105 | if (Math.abs(Math.abs(con) - Math.abs(qs)) > .0000000001 ) { |
---|
106 | lat = this.phi1z(this.e3,qs); |
---|
107 | } else { |
---|
108 | if (qs >= 0) { |
---|
109 | lat = .5 * PI; |
---|
110 | } else { |
---|
111 | lat = -.5 * PI; |
---|
112 | } |
---|
113 | } |
---|
114 | } else { |
---|
115 | lat = this.phi1z(e3,qs); |
---|
116 | } |
---|
117 | |
---|
118 | lon = Proj4js.common.adjust_lon(theta/this.ns0 + this.long0); |
---|
119 | p.x = lon; |
---|
120 | p.y = lat; |
---|
121 | return p; |
---|
122 | }, |
---|
123 | |
---|
124 | /* Function to compute phi1, the latitude for the inverse of the |
---|
125 | Albers Conical Equal-Area projection. |
---|
126 | -------------------------------------------*/ |
---|
127 | phi1z: function (eccent,qs) { |
---|
128 | var con, com, dphi; |
---|
129 | var phi = Proj4js.common.asinz(.5 * qs); |
---|
130 | if (eccent < Proj4js.common.EPSLN) return phi; |
---|
131 | |
---|
132 | var eccnts = eccent * eccent; |
---|
133 | for (var i = 1; i <= 25; i++) { |
---|
134 | sinphi = Math.sin(phi); |
---|
135 | cosphi = Math.cos(phi); |
---|
136 | con = eccent * sinphi; |
---|
137 | com = 1.0 - con * con; |
---|
138 | dphi = .5 * com * com / cosphi * (qs / (1.0 - eccnts) - sinphi / com + .5 / eccent * Math.log((1.0 - con) / (1.0 + con))); |
---|
139 | phi = phi + dphi; |
---|
140 | if (Math.abs(dphi) <= 1e-7) return phi; |
---|
141 | } |
---|
142 | Proj4js.reportError("aea:phi1z:Convergence error"); |
---|
143 | return null; |
---|
144 | } |
---|
145 | |
---|
146 | }; |
---|
147 | |
---|
148 | |
---|
149 | |
---|