[76] | 1 | /******************************************************************************* |
---|
| 2 | NAME EQUIDISTANT CONIC |
---|
| 3 | |
---|
| 4 | PURPOSE: Transforms input longitude and latitude to Easting and Northing |
---|
| 5 | for the Equidistant Conic projection. The longitude and |
---|
| 6 | latitude must be in radians. The Easting and Northing values |
---|
| 7 | will be returned in meters. |
---|
| 8 | |
---|
| 9 | PROGRAMMER DATE |
---|
| 10 | ---------- ---- |
---|
| 11 | T. Mittan Mar, 1993 |
---|
| 12 | |
---|
| 13 | ALGORITHM REFERENCES |
---|
| 14 | |
---|
| 15 | 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological |
---|
| 16 | Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United |
---|
| 17 | State Government Printing Office, Washington D.C., 1987. |
---|
| 18 | |
---|
| 19 | 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", |
---|
| 20 | U.S. Geological Survey Professional Paper 1453 , United State Government |
---|
| 21 | Printing Office, Washington D.C., 1989. |
---|
| 22 | *******************************************************************************/ |
---|
| 23 | |
---|
| 24 | /* Variables common to all subroutines in this code file |
---|
| 25 | -----------------------------------------------------*/ |
---|
| 26 | |
---|
| 27 | Proj4js.Proj.eqdc = { |
---|
| 28 | |
---|
| 29 | /* Initialize the Equidistant Conic projection |
---|
| 30 | ------------------------------------------*/ |
---|
| 31 | init: function() { |
---|
| 32 | |
---|
| 33 | /* Place parameters in static storage for common use |
---|
| 34 | -------------------------------------------------*/ |
---|
| 35 | |
---|
| 36 | if(!this.mode) this.mode=0;//chosen default mode |
---|
| 37 | this.temp = this.b / this.a; |
---|
| 38 | this.es = 1.0 - Math.pow(this.temp,2); |
---|
| 39 | this.e = Math.sqrt(this.es); |
---|
| 40 | this.e0 = Proj4js.common.e0fn(this.es); |
---|
| 41 | this.e1 = Proj4js.common.e1fn(this.es); |
---|
| 42 | this.e2 = Proj4js.common.e2fn(this.es); |
---|
| 43 | this.e3 = Proj4js.common.e3fn(this.es); |
---|
| 44 | |
---|
| 45 | this.sinphi=Math.sin(this.lat1); |
---|
| 46 | this.cosphi=Math.cos(this.lat1); |
---|
| 47 | |
---|
| 48 | this.ms1 = Proj4js.common.msfnz(this.e,this.sinphi,this.cosphi); |
---|
| 49 | this.ml1 = Proj4js.common.mlfn(this.e0, this.e1, this.e2,this.e3, this.lat1); |
---|
| 50 | |
---|
| 51 | /* format B |
---|
| 52 | ---------*/ |
---|
| 53 | if (this.mode != 0) { |
---|
| 54 | if (Math.abs(this.lat1 + this.lat2) < Proj4js.common.EPSLN) { |
---|
| 55 | Proj4js.reportError("eqdc:Init:EqualLatitudes"); |
---|
| 56 | //return(81); |
---|
| 57 | } |
---|
| 58 | this.sinphi=Math.sin(this.lat2); |
---|
| 59 | this.cosphi=Math.cos(this.lat2); |
---|
| 60 | |
---|
| 61 | this.ms2 = Proj4js.common.msfnz(this.e,this.sinphi,this.cosphi); |
---|
| 62 | this.ml2 = Proj4js.common.mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2); |
---|
| 63 | if (Math.abs(this.lat1 - this.lat2) >= Proj4js.common.EPSLN) { |
---|
| 64 | this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1); |
---|
| 65 | } else { |
---|
| 66 | this.ns = this.sinphi; |
---|
| 67 | } |
---|
| 68 | } else { |
---|
| 69 | this.ns = this.sinphi; |
---|
| 70 | } |
---|
| 71 | this.g = this.ml1 + this.ms1/this.ns; |
---|
| 72 | this.ml0 = Proj4js.common.mlfn(this.e0, this.e1,this. e2, this.e3, this.lat0); |
---|
| 73 | this.rh = this.a * (this.g - this.ml0); |
---|
| 74 | }, |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | /* Equidistant Conic forward equations--mapping lat,long to x,y |
---|
| 78 | -----------------------------------------------------------*/ |
---|
| 79 | forward: function(p) { |
---|
| 80 | var lon=p.x; |
---|
| 81 | var lat=p.y; |
---|
| 82 | |
---|
| 83 | /* Forward equations |
---|
| 84 | -----------------*/ |
---|
| 85 | var ml = Proj4js.common.mlfn(this.e0, this.e1, this.e2, this.e3, lat); |
---|
| 86 | var rh1 = this.a * (this.g - ml); |
---|
| 87 | var theta = this.ns * Proj4js.common.adjust_lon(lon - this.long0); |
---|
| 88 | |
---|
| 89 | var x = this.x0 + rh1 * Math.sin(theta); |
---|
| 90 | var y = this.y0 + this.rh - rh1 * Math.cos(theta); |
---|
| 91 | p.x=x; |
---|
| 92 | p.y=y; |
---|
| 93 | return p; |
---|
| 94 | }, |
---|
| 95 | |
---|
| 96 | /* Inverse equations |
---|
| 97 | -----------------*/ |
---|
| 98 | inverse: function(p) { |
---|
| 99 | p.x -= this.x0; |
---|
| 100 | p.y = this.rh - p.y + this.y0; |
---|
| 101 | var con, rh1; |
---|
| 102 | if (this.ns >= 0) { |
---|
| 103 | var rh1 = Math.sqrt(p.x *p.x + p.y * p.y); |
---|
| 104 | var con = 1.0; |
---|
| 105 | } else { |
---|
| 106 | rh1 = -Math.sqrt(p.x *p. x +p. y * p.y); |
---|
| 107 | con = -1.0; |
---|
| 108 | } |
---|
| 109 | var theta = 0.0; |
---|
| 110 | if (rh1 != 0.0) theta = Math.atan2(con *p.x, con *p.y); |
---|
| 111 | var ml = this.g - rh1 /this.a; |
---|
| 112 | var lat = this.phi3z(ml,this.e0,this.e1,this.e2,this.e3); |
---|
| 113 | var lon = Proj4js.common.adjust_lon(this.long0 + theta / this.ns); |
---|
| 114 | |
---|
| 115 | p.x=lon; |
---|
| 116 | p.y=lat; |
---|
| 117 | return p; |
---|
| 118 | }, |
---|
| 119 | |
---|
| 120 | /* Function to compute latitude, phi3, for the inverse of the Equidistant |
---|
| 121 | Conic projection. |
---|
| 122 | -----------------------------------------------------------------*/ |
---|
| 123 | phi3z: function(ml,e0,e1,e2,e3) { |
---|
| 124 | var phi; |
---|
| 125 | var dphi; |
---|
| 126 | |
---|
| 127 | phi = ml; |
---|
| 128 | for (var i = 0; i < 15; i++) { |
---|
| 129 | dphi = (ml + e1 * Math.sin(2.0 * phi) - e2 * Math.sin(4.0 * phi) + e3 * Math.sin(6.0 * phi))/ e0 - phi; |
---|
| 130 | phi += dphi; |
---|
| 131 | if (Math.abs(dphi) <= .0000000001) { |
---|
| 132 | return phi; |
---|
| 133 | } |
---|
| 134 | } |
---|
| 135 | Proj4js.reportError("PHI3Z-CONV:Latitude failed to converge after 15 iterations"); |
---|
| 136 | return null; |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | }; |
---|