1 | /******************************************************************************* |
---|
2 | NAME LAMBERT AZIMUTHAL EQUAL-AREA |
---|
3 | |
---|
4 | PURPOSE: Transforms input longitude and latitude to Easting and |
---|
5 | Northing for the Lambert Azimuthal Equal-Area projection. The |
---|
6 | longitude and latitude must be in radians. The Easting |
---|
7 | and Northing values will be returned in meters. |
---|
8 | |
---|
9 | PROGRAMMER DATE |
---|
10 | ---------- ---- |
---|
11 | D. Steinwand, EROS March, 1991 |
---|
12 | |
---|
13 | This function was adapted from the Lambert Azimuthal Equal Area projection |
---|
14 | code (FORTRAN) in the General Cartographic Transformation Package software |
---|
15 | which is available from the U.S. Geological Survey National Mapping Division. |
---|
16 | |
---|
17 | ALGORITHM REFERENCES |
---|
18 | |
---|
19 | 1. "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, |
---|
20 | The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. |
---|
21 | |
---|
22 | 2. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological |
---|
23 | Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United |
---|
24 | State Government Printing Office, Washington D.C., 1987. |
---|
25 | |
---|
26 | 3. "Software Documentation for GCTP General Cartographic Transformation |
---|
27 | Package", U.S. Geological Survey National Mapping Division, May 1982. |
---|
28 | *******************************************************************************/ |
---|
29 | |
---|
30 | Proj4js.Proj.laea = { |
---|
31 | S_POLE: 1, |
---|
32 | N_POLE: 2, |
---|
33 | EQUIT: 3, |
---|
34 | OBLIQ: 4, |
---|
35 | |
---|
36 | |
---|
37 | /* Initialize the Lambert Azimuthal Equal Area projection |
---|
38 | ------------------------------------------------------*/ |
---|
39 | init: function() { |
---|
40 | var t = Math.abs(this.lat0); |
---|
41 | if (Math.abs(t - Proj4js.common.HALF_PI) < Proj4js.common.EPSLN) { |
---|
42 | this.mode = this.lat0 < 0. ? this.S_POLE : this.N_POLE; |
---|
43 | } else if (Math.abs(t) < Proj4js.common.EPSLN) { |
---|
44 | this.mode = this.EQUIT; |
---|
45 | } else { |
---|
46 | this.mode = this.OBLIQ; |
---|
47 | } |
---|
48 | if (this.es > 0) { |
---|
49 | var sinphi; |
---|
50 | |
---|
51 | this.qp = Proj4js.common.qsfnz(this.e, 1.0); |
---|
52 | this.mmf = .5 / (1. - this.es); |
---|
53 | this.apa = this.authset(this.es); |
---|
54 | switch (this.mode) { |
---|
55 | case this.N_POLE: |
---|
56 | case this.S_POLE: |
---|
57 | this.dd = 1.; |
---|
58 | break; |
---|
59 | case this.EQUIT: |
---|
60 | this.rq = Math.sqrt(.5 * this.qp); |
---|
61 | this.dd = 1. / this.rq; |
---|
62 | this.xmf = 1.; |
---|
63 | this.ymf = .5 * this.qp; |
---|
64 | break; |
---|
65 | case this.OBLIQ: |
---|
66 | this.rq = Math.sqrt(.5 * this.qp); |
---|
67 | sinphi = Math.sin(this.lat0); |
---|
68 | this.sinb1 = Proj4js.common.qsfnz(this.e, sinphi) / this.qp; |
---|
69 | this.cosb1 = Math.sqrt(1. - this.sinb1 * this.sinb1); |
---|
70 | this.dd = Math.cos(this.lat0) / (Math.sqrt(1. - this.es * sinphi * sinphi) * this.rq * this.cosb1); |
---|
71 | this.ymf = (this.xmf = this.rq) / this.dd; |
---|
72 | this.xmf *= this.dd; |
---|
73 | break; |
---|
74 | } |
---|
75 | } else { |
---|
76 | if (this.mode == this.OBLIQ) { |
---|
77 | this.sinph0 = Math.sin(this.lat0); |
---|
78 | this.cosph0 = Math.cos(this.lat0); |
---|
79 | } |
---|
80 | } |
---|
81 | }, |
---|
82 | |
---|
83 | /* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y |
---|
84 | -----------------------------------------------------------------------*/ |
---|
85 | forward: function(p) { |
---|
86 | |
---|
87 | /* Forward equations |
---|
88 | -----------------*/ |
---|
89 | var x,y; |
---|
90 | var lam=p.x; |
---|
91 | var phi=p.y; |
---|
92 | lam = Proj4js.common.adjust_lon(lam - this.long0); |
---|
93 | |
---|
94 | if (this.sphere) { |
---|
95 | var coslam, cosphi, sinphi; |
---|
96 | |
---|
97 | sinphi = Math.sin(phi); |
---|
98 | cosphi = Math.cos(phi); |
---|
99 | coslam = Math.cos(lam); |
---|
100 | switch (this.mode) { |
---|
101 | case this.OBLIQ: |
---|
102 | case this.EQUIT: |
---|
103 | y = (this.mode == this.EQUIT) ? 1. + cosphi * coslam : 1. + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam; |
---|
104 | if (y <= Proj4js.common.EPSLN) { |
---|
105 | Proj4js.reportError("laea:fwd:y less than eps"); |
---|
106 | return null; |
---|
107 | } |
---|
108 | y = Math.sqrt(2. / y); |
---|
109 | x = y * cosphi * Math.sin(lam); |
---|
110 | y *= (this.mode == this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam; |
---|
111 | break; |
---|
112 | case this.N_POLE: |
---|
113 | coslam = -coslam; |
---|
114 | case this.S_POLE: |
---|
115 | if (Math.abs(phi + this.phi0) < Proj4js.common.EPSLN) { |
---|
116 | Proj4js.reportError("laea:fwd:phi < eps"); |
---|
117 | return null; |
---|
118 | } |
---|
119 | y = Proj4js.common.FORTPI - phi * .5; |
---|
120 | y = 2. * ((this.mode == this.S_POLE) ? Math.cos(y) : Math.sin(y)); |
---|
121 | x = y * Math.sin(lam); |
---|
122 | y *= coslam; |
---|
123 | break; |
---|
124 | } |
---|
125 | } else { |
---|
126 | var coslam, sinlam, sinphi, q, sinb=0.0, cosb=0.0, b=0.0; |
---|
127 | |
---|
128 | coslam = Math.cos(lam); |
---|
129 | sinlam = Math.sin(lam); |
---|
130 | sinphi = Math.sin(phi); |
---|
131 | q = Proj4js.common.qsfnz(this.e, sinphi); |
---|
132 | if (this.mode == this.OBLIQ || this.mode == this.EQUIT) { |
---|
133 | sinb = q / this.qp; |
---|
134 | cosb = Math.sqrt(1. - sinb * sinb); |
---|
135 | } |
---|
136 | switch (this.mode) { |
---|
137 | case this.OBLIQ: |
---|
138 | b = 1. + this.sinb1 * sinb + this.cosb1 * cosb * coslam; |
---|
139 | break; |
---|
140 | case this.EQUIT: |
---|
141 | b = 1. + cosb * coslam; |
---|
142 | break; |
---|
143 | case this.N_POLE: |
---|
144 | b = Proj4js.common.HALF_PI + phi; |
---|
145 | q = this.qp - q; |
---|
146 | break; |
---|
147 | case this.S_POLE: |
---|
148 | b = phi - Proj4js.common.HALF_PI; |
---|
149 | q = this.qp + q; |
---|
150 | break; |
---|
151 | } |
---|
152 | if (Math.abs(b) < Proj4js.common.EPSLN) { |
---|
153 | Proj4js.reportError("laea:fwd:b < eps"); |
---|
154 | return null; |
---|
155 | } |
---|
156 | switch (this.mode) { |
---|
157 | case this.OBLIQ: |
---|
158 | case this.EQUIT: |
---|
159 | b = Math.sqrt(2. / b); |
---|
160 | if (this.mode == this.OBLIQ) { |
---|
161 | y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam); |
---|
162 | } else { |
---|
163 | y = (b = Math.sqrt(2. / (1. + cosb * coslam))) * sinb * this.ymf; |
---|
164 | } |
---|
165 | x = this.xmf * b * cosb * sinlam; |
---|
166 | break; |
---|
167 | case this.N_POLE: |
---|
168 | case this.S_POLE: |
---|
169 | if (q >= 0.) { |
---|
170 | x = (b = Math.sqrt(q)) * sinlam; |
---|
171 | y = coslam * ((this.mode == this.S_POLE) ? b : -b); |
---|
172 | } else { |
---|
173 | x = y = 0.; |
---|
174 | } |
---|
175 | break; |
---|
176 | } |
---|
177 | } |
---|
178 | |
---|
179 | //v 1.0 |
---|
180 | /* |
---|
181 | var sin_lat=Math.sin(lat); |
---|
182 | var cos_lat=Math.cos(lat); |
---|
183 | |
---|
184 | var sin_delta_lon=Math.sin(delta_lon); |
---|
185 | var cos_delta_lon=Math.cos(delta_lon); |
---|
186 | |
---|
187 | var g =this.sin_lat_o * sin_lat +this.cos_lat_o * cos_lat * cos_delta_lon; |
---|
188 | if (g == -1.0) { |
---|
189 | Proj4js.reportError("laea:fwd:Point projects to a circle of radius "+ 2.0 * R); |
---|
190 | return null; |
---|
191 | } |
---|
192 | var ksp = this.a * Math.sqrt(2.0 / (1.0 + g)); |
---|
193 | var x = ksp * cos_lat * sin_delta_lon + this.x0; |
---|
194 | var y = ksp * (this.cos_lat_o * sin_lat - this.sin_lat_o * cos_lat * cos_delta_lon) + this.y0; |
---|
195 | */ |
---|
196 | p.x = this.a*x + this.x0; |
---|
197 | p.y = this.a*y + this.y0; |
---|
198 | return p; |
---|
199 | },//lamazFwd() |
---|
200 | |
---|
201 | /* Inverse equations |
---|
202 | -----------------*/ |
---|
203 | inverse: function(p) { |
---|
204 | p.x -= this.x0; |
---|
205 | p.y -= this.y0; |
---|
206 | var x = p.x/this.a; |
---|
207 | var y = p.y/this.a; |
---|
208 | |
---|
209 | if (this.sphere) { |
---|
210 | var cosz=0.0, rh, sinz=0.0; |
---|
211 | |
---|
212 | rh = Math.sqrt(x*x + y*y); |
---|
213 | var phi = rh * .5; |
---|
214 | if (phi > 1.) { |
---|
215 | Proj4js.reportError("laea:Inv:DataError"); |
---|
216 | return null; |
---|
217 | } |
---|
218 | phi = 2. * Math.asin(phi); |
---|
219 | if (this.mode == this.OBLIQ || this.mode == this.EQUIT) { |
---|
220 | sinz = Math.sin(phi); |
---|
221 | cosz = Math.cos(phi); |
---|
222 | } |
---|
223 | switch (this.mode) { |
---|
224 | case this.EQUIT: |
---|
225 | phi = (Math.abs(rh) <= Proj4js.common.EPSLN) ? 0. : Math.asin(y * sinz / rh); |
---|
226 | x *= sinz; |
---|
227 | y = cosz * rh; |
---|
228 | break; |
---|
229 | case this.OBLIQ: |
---|
230 | phi = (Math.abs(rh) <= Proj4js.common.EPSLN) ? this.phi0 : Math.asin(cosz * sinph0 + y * sinz * cosph0 / rh); |
---|
231 | x *= sinz * cosph0; |
---|
232 | y = (cosz - Math.sin(phi) * sinph0) * rh; |
---|
233 | break; |
---|
234 | case this.N_POLE: |
---|
235 | y = -y; |
---|
236 | phi = Proj4js.common.HALF_PI - phi; |
---|
237 | break; |
---|
238 | case this.S_POLE: |
---|
239 | phi -= Proj4js.common.HALF_PI; |
---|
240 | break; |
---|
241 | } |
---|
242 | lam = (y == 0. && (this.mode == this.EQUIT || this.mode == this.OBLIQ)) ? 0. : Math.atan2(x, y); |
---|
243 | } else { |
---|
244 | var cCe, sCe, q, rho, ab=0.0; |
---|
245 | |
---|
246 | switch (this.mode) { |
---|
247 | case this.EQUIT: |
---|
248 | case this.OBLIQ: |
---|
249 | x /= this.dd; |
---|
250 | y *= this.dd; |
---|
251 | rho = Math.sqrt(x*x + y*y); |
---|
252 | if (rho < Proj4js.common.EPSLN) { |
---|
253 | p.x = 0.; |
---|
254 | p.y = this.phi0; |
---|
255 | return p; |
---|
256 | } |
---|
257 | sCe = 2. * Math.asin(.5 * rho / this.rq); |
---|
258 | cCe = Math.cos(sCe); |
---|
259 | x *= (sCe = Math.sin(sCe)); |
---|
260 | if (this.mode == this.OBLIQ) { |
---|
261 | ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho |
---|
262 | q = this.qp * ab; |
---|
263 | y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe; |
---|
264 | } else { |
---|
265 | ab = y * sCe / rho; |
---|
266 | q = this.qp * ab; |
---|
267 | y = rho * cCe; |
---|
268 | } |
---|
269 | break; |
---|
270 | case this.N_POLE: |
---|
271 | y = -y; |
---|
272 | case this.S_POLE: |
---|
273 | q = (x * x + y * y); |
---|
274 | if (!q ) { |
---|
275 | p.x = 0.; |
---|
276 | p.y = this.phi0; |
---|
277 | return p; |
---|
278 | } |
---|
279 | /* |
---|
280 | q = this.qp - q; |
---|
281 | */ |
---|
282 | ab = 1. - q / this.qp; |
---|
283 | if (this.mode == this.S_POLE) { |
---|
284 | ab = - ab; |
---|
285 | } |
---|
286 | break; |
---|
287 | } |
---|
288 | lam = Math.atan2(x, y); |
---|
289 | phi = this.authlat(Math.asin(ab), this.apa); |
---|
290 | } |
---|
291 | |
---|
292 | /* |
---|
293 | var Rh = Math.Math.sqrt(p.x *p.x +p.y * p.y); |
---|
294 | var temp = Rh / (2.0 * this.a); |
---|
295 | |
---|
296 | if (temp > 1) { |
---|
297 | Proj4js.reportError("laea:Inv:DataError"); |
---|
298 | return null; |
---|
299 | } |
---|
300 | |
---|
301 | var z = 2.0 * Proj4js.common.asinz(temp); |
---|
302 | var sin_z=Math.sin(z); |
---|
303 | var cos_z=Math.cos(z); |
---|
304 | |
---|
305 | var lon =this.long0; |
---|
306 | if (Math.abs(Rh) > Proj4js.common.EPSLN) { |
---|
307 | var lat = Proj4js.common.asinz(this.sin_lat_o * cos_z +this. cos_lat_o * sin_z *p.y / Rh); |
---|
308 | var temp =Math.abs(this.lat0) - Proj4js.common.HALF_PI; |
---|
309 | if (Math.abs(temp) > Proj4js.common.EPSLN) { |
---|
310 | temp = cos_z -this.sin_lat_o * Math.sin(lat); |
---|
311 | if(temp!=0.0) lon=Proj4js.common.adjust_lon(this.long0+Math.atan2(p.x*sin_z*this.cos_lat_o,temp*Rh)); |
---|
312 | } else if (this.lat0 < 0.0) { |
---|
313 | lon = Proj4js.common.adjust_lon(this.long0 - Math.atan2(-p.x,p.y)); |
---|
314 | } else { |
---|
315 | lon = Proj4js.common.adjust_lon(this.long0 + Math.atan2(p.x, -p.y)); |
---|
316 | } |
---|
317 | } else { |
---|
318 | lat = this.lat0; |
---|
319 | } |
---|
320 | */ |
---|
321 | //return(OK); |
---|
322 | p.x = Proj4js.common.adjust_lon(this.long0+lam); |
---|
323 | p.y = phi; |
---|
324 | return p; |
---|
325 | },//lamazInv() |
---|
326 | |
---|
327 | /* determine latitude from authalic latitude */ |
---|
328 | P00: .33333333333333333333, |
---|
329 | P01: .17222222222222222222, |
---|
330 | P02: .10257936507936507936, |
---|
331 | P10: .06388888888888888888, |
---|
332 | P11: .06640211640211640211, |
---|
333 | P20: .01641501294219154443, |
---|
334 | |
---|
335 | authset: function(es) { |
---|
336 | var t; |
---|
337 | var APA = new Array(); |
---|
338 | APA[0] = es * this.P00; |
---|
339 | t = es * es; |
---|
340 | APA[0] += t * this.P01; |
---|
341 | APA[1] = t * this.P10; |
---|
342 | t *= es; |
---|
343 | APA[0] += t * this.P02; |
---|
344 | APA[1] += t * this.P11; |
---|
345 | APA[2] = t * this.P20; |
---|
346 | return APA; |
---|
347 | }, |
---|
348 | |
---|
349 | authlat: function(beta, APA) { |
---|
350 | var t = beta+beta; |
---|
351 | return(beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t+t) + APA[2] * Math.sin(t+t+t)); |
---|
352 | } |
---|
353 | |
---|
354 | }; |
---|
355 | |
---|
356 | |
---|
357 | |
---|